Wednesday, November 7, 2012

Spillover

Spillover: Animal Infections and the Next Human Pandemic
by David Quammen
W. W. Norton & Company, 10/1/2012
Hardcover, 592 pages
ISBN-13: 9780393066807
http://www.davidquammen.com/spillover

Description:
The emergence of strange new diseases is a frightening problem that seems to be getting worse. In this age of speedy travel, it threatens a worldwide pandemic. We hear news reports of Ebola, SARS, AIDS, and something called Hendra killing horses and people in Australia—but those reports miss the big truth that such phenomena are part of a single pattern. The bugs that transmit these diseases share one thing: they originate in wild animals and pass to humans by a process called spillover. David Quammen tracks this subject around the world. He recounts adventures in the field—netting bats in China, trapping monkeys in Bangladesh, stalking gorillas in the Congo—with the world’s leading disease scientists. In Spillover Quammen takes the reader along on this astonishing quest to learn how, where from, and why these diseases emerge, and he asks the terrifying question: What might the next big one be?

My Thoughts:

Once I saw the subject of David Quammen's latest book, Spillover: Animal Infections and the Next Human Pandemic, I was determined to get my hands on and read it as soon as possible. True - and it is worth every dollar I spent.
Likely the next big pandemic will be the result of a spillover virus of some kind. A spillover describes a zoonosis, infectious diseases that originate in animals and spread to humans.
 
Quammen explains:
"When a pathogen leaps from some nonhuman animal into a person, and succeeds there in establishing itself as an infectious presence, sometimes causing illness or death, the result is a zoonosis. (pg.20)" "Ebola is a zoonosis. So is bubonic plague. So was the so-called Spanish influenza of 1918-19 [which killed] as many as 50 million people...(pg. 21)"
And:
"Emergence and spillover are distinct concepts but interconnected. 'Spillover' is the term used by disease ecologists... to denote the moment when a pathogen passes from members of one species, as host, into members of another. It's a focused event. (pg. 43)"
 
Viruses/diseases discussed include: Ebola, Hendra, hantaviruses, influenza (H5N1, H1N1), Lyme disease, herpes B, the Black Death (perhaps), hepatitis C, AIDS, SARS, dengue, rabies, Marburg, Nipah, Marchupo, yellow fever, Lassa, HIV, and more. It's very likely that most of the virulent viruses we fear begin as a spillover zoonosis. Certainly every time we hear of a new flu virus, we will also hear where it is suspected that it originated from, be it swine or bird.
 
What is truly frightening is that, while the big outbreaks of these viruses seem to be limited, in reality the viruses, like Ebola, are present all the time. Predicting or anticipating when an outbreak will occur is impossible. It is helpful to know what animals carry the viruses. Add to that knowledge the reality that today an infected person or potential carrier of a deadly virus can fly across the world in a short amount of time.
 
It is quite interesting to read Quammen account revealing that "AIDS  began with a spillover from one chimp to one human, in southeastern Cameroon, no later than 1908 (give or take a margin of error) and grew slowly but inexorably from there. (pg. 427)"
 
One of the many great qualities of Spillover is the accessibility of Quammen's writing. He creates a palatable sense of drama and anticipation in this very informative nonfiction account. He informs and entertains; even while imparting serious information, he includes witty, humorous comments. I enjoyed this book very much.
 
Get your flu shot and read Spillover. Today. (Start with the short quoted chapter below.)
 
Very Highly Recommended - one of the best
 

Quotes: 
Chapter 3 in "Pale Horse"
 
"Infectious disease is all around us. Infectious disease is a kind of natural mortar binding one creature to another, one species to another, within the elaborate biophysical edifices we call ecosystems. It’s one of the basic processes that ecologists study, including also predation, competition, decomposition, and photosynthesis. Predators are relatively big beasts that eat their prey from outside. Pathogens (disease-causing agents, such as viruses) are relatively small beasts that eat their prey from within. Although infectious disease can seem grisly and dreadful, under ordinary conditions it’s every bit as natural as what lions do to wildebeests and zebras, or what owls do to mice.

But conditions aren’t always ordinary.

Just as predators have their accustomed prey, their favored targets, so do pathogens. And just as a lion might occasionally depart from its normal behavior—to kill a cow instead of a wildebeest, a human instead of a zebra—so can a pathogen shift to a new target. Accidents happen. Aberrations occur. Circumstances change and, with them, exigencies and opportunities change too. When a pathogen leaps from some nonhuman animal into a person, and succeeds there in establishing itself as an infectious presence, sometimes causing illness or death, the result is a zoonosis.

It’s a mildly technical term, zoonosis, unfamiliar to most people, but it helps clarify the biological complexities behind the ominous headlines about swine flu, bird flu, SARS, emerging diseases in general, and the threat of a global pandemic. It helps us comprehend why medical science and public health campaigns have been able to conquer some horrific diseases, such as smallpox and polio, but unable to conquer other horrific diseases, such as dengue and yellow fever. It says something essential about the origins of AIDS. It’s a word of the future, destined for heavy use in the twenty-first century.

Ebola is a zoonosis. So is bubonic plague. So was the so-called Spanish influenza of 1918–1919, which had its ultimate source in a wild aquatic bird and, after passing through some combination of domesticated animals (a duck in southern China, a sow in Iowa?) emerged to kill as many as 50 million people before receding into obscurity. All of the human influenzas are zoonoses. So are monkeypox, bovine tuberculosis, Lyme disease, West Nile fever, Marburg virus disease, rabies, hantavirus pulmonary syndrome, anthrax, Lassa fever, Rift Valley fever, ocular larva migrans, scrub typhus, Bolivian hemorrhagic fever, Kyasanur forest disease, and a strange new affliction called Nipah encephalitis, which has killed pigs and pig farmers in Malaysia. Each of them reflects the action of a pathogen that can cross into people from other animals. AIDS is a disease of zoonotic origin caused by a virus that, having reached humans through just a few accidental events in western and central Africa, now passes human-to-human by the millions. This form of interspecies leap is common, not rare; about 60 percent of all human infectious diseases currently known either cross routinely or have recently crossed between other animals and us. Some of those—notably rabies—are familiar, widespread, and still horrendously lethal, killing humans by the thousands despite centuries of efforts at coping with their effects, concerted international attempts to eradicate or control them, and a pretty clear scientific understanding of how they work. Others are new and inexplicably sporadic, claiming a few victims (as Hendra does) or a few hundred (Ebola) in this place or that, and then disappearing for years.

Smallpox, to take one counterexample, is not a zoonosis. It’s caused by variola virus, which under natural conditions infects only humans. (Laboratory conditions are another matter; the virus has sometimes been inflicted experimentally on nonhuman primates or other animals, usually for vaccine research.) That helps explain why a global campaign mounted by the World Health Organization (WHO) to eradicate smallpox was, as of 1980, successful. Smallpox could be eradicated because that virus, lacking ability to reside and reproduce anywhere but in a human body (or a carefully watched lab animal), couldn’t hide. Likewise poliomyelitis, a viral disease that has afflicted humans for millennia but that (for counterintuitive reasons involving improved hygiene and delayed exposure of children to the virus) became a fearsome epidemic threat during the first half of the twentieth century, especially in Europe and North America. In the United States, the polio problem peaked in 1952 with an outbreak that killed more than three thousand victims, many of them children, and left twenty-one thousand at least partially paralyzed. Soon afterward, vaccines developed by Jonas Salk, Albert Sabin, and a virologist named Hilary Koprowski (about whose controversial career, more later) came into wide use, eventually eliminating poliomyelitis throughout most of the world. In 1988, WHO and several partner institutions launched an international effort toward eradication, which has succeeded so far in reducing polio case numbers by 99 percent. The Americas have been declared polio-free, as have Europe and Australia. Only five countries, as of latest reports in 2011, still seemed to have a minor, sputtering presence of polio: Nigeria, India, Pakistan, Afghanistan, and China. The eradication campaign for poliomyelitis, unlike other well-meant and expensive global health initiatives, may succeed. Why? Because vaccinating humans by the millions is inexpensive, easy, and permanently effective, and because apart from infecting humans, the poliovirus has nowhere to hide. It’s not zoonotic.

Zoonotic pathogens can hide. That’s what makes them so interesting, so complicated, and so problematic.

Monkeypox is a disease similar to smallpox, caused by a virus closely related to variola. It’s a continuing threat to people in central and western Africa. Monkeypox differs from smallpox in one crucial way: the ability of its virus to infect nonhuman primates (hence the name) and some mammals of other sorts, including rats, mice, squirrels, rabbits, and American prairie dogs. Yellow fever, also infectious to both monkeys and humans, results from a virus that passes from victim to victim, and sometimes from monkey to human, in the bite of certain mosquitoes. This is a more complex situation. One result of the complexity is that yellow fever will probably continue to occur in humans—unless WHO kills every mosquito vector or every susceptible monkey in tropical Africa and South America. The Lyme disease agent, a type of bacterium, hides effectively in white-footed mice and other small mammals. These pathogens aren’t consciously hiding, of course. They reside where they do and transmit as they do because those happenstance options have worked for them in the past, yielding opportunities for survival and reproduction. By the cold Darwinian logic of natural selection, evolution codifies happenstance into strategy.

The least conspicuous strategy of all is to lurk within what’s called a reservoir host. A reservoir host (some scientists prefer “natural host”) is a living organism that carries the pathogen, harbors it chronically, while suffering little or no illness. When a disease seems to disappear between outbreaks (again, as Hendra did after 1994), its causative agent has got to be somewhere, yes? Well, maybe it vanished entirely from planet Earth—but probably not. Maybe it died off throughout the region and will only reappear when the winds and the fates bring it back from elsewhere. Or maybe it’s still lingering nearby, all around, within some reservoir host. A rodent? A bird? A butterfly? A bat? To reside undetected within a reservoir host is probably easiest wherever biological diversity is high and the ecosystem is relatively undisturbed. The converse is also true: Ecological disturbance causes diseases to emerge. Shake a tree, and things fall out.

Nearly all zoonotic diseases result from infection by one of six kinds of pathogen: viruses, bacteria, fungi, protists (a group of small, complex creatures such as amoebae, formerly but misleadingly known as protozoans), prions, and worms. Mad cow disease is caused by a prion, a weirdly folded protein molecule that triggers weird folding in other molecules, like Kurt Vonnegut’s infectious form of water, ice-nine, in his great early novel Cat’s Cradle. Sleeping sickness results from infection by a protist called Trypanosoma brucei, carried by tsetse flies among wild mammals, livestock, and people in sub-Saharan Africa. Anthrax is caused by a bacterium that can live dormant in soil for years and then, when scuffed out, infect humans by way of their grazing animals. Toxocariasis is a mild zoonosis caused by roundworms; you can get it from your dog. But fortunately, like your dog, you can be wormed.

Viruses are the most problematic. They evolve quickly, they are unaffected by antibiotics, they can be elusive, they can be versatile, they can inflict extremely high rates of fatality, and they are fiendishly simple, at least relative to other living or quasi-living creatures. Ebola, West Nile, Marburg, the SARS bug, monkeypox, rabies, Machupo, dengue, the yellow fever agent, Nipah, Hendra, Hantaan (the namesake of the hantaviruses, first identified in Korea), chikungunya, Junin, Borna, the influenzas, and the HIVs (HIV-1, which mainly accounts for the AIDS pandemic, and HIV-2, which is less widespread) are all viruses. The full list is much longer. There is a thing known by the vivid name “simian foamy virus” (SFV) that infects monkeys and humans in Asia, crossing between them by way of the venues (such as Buddhist and Hindu temples) where people and half-tame macaques come into close contact. Among the people visiting those temples, feeding handouts to those macaques, exposing themselves to SFV, are international tourists. Some carry away more than photos and memories. “Viruses have no locomotion,” according to the eminent virologist Stephen S. Morse, “yet many of them have traveled around the world.” They can’t run, they can’t walk, they can’t swim, they can’t crawl. They ride." page 20-24

No comments: